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With over 90 000 flights daily, small improvements in
commercial aircraft performance can have a huge impact



The Boeing 707 and the Boeing 787 do not appear to have
vastly different designs...



Over 80% reduction in fuel burn of current generation
compared to first generation jets
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Where will the next 80% fuel burn reduction come from?



The next generation of transport aircraft will be
more challenging to design

High aspect ratio, flexible wings

Coupled aero-propulsion effects from boundary layer ingestion

Complex non-linear flutter behavior for truss-braced wings

Unknown design space

High risk



Challenges for high-fidelity optimization in aircraft design

Computational

expensive objective and

constraints

Multiple high-coupled

systems

Large number of design

variables, design points

and constraints
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Gradient based optimization is our only hope for
large numbers of design variables



Gradient-based optimization
requires derivatives of the objective and constraints

min f (x , y(x))

s.t h (x , y(x)) = 0

g (x , y(x)) ≤ 0

x : design variables
y : state variables. Determined by solving
R (x , y(x)) = 0

Need to find df
dx (and dh

dx , dg
dx )



Method for computing derivatives



Compute derivatives by linearizing the governing equations

Need df /dx , f (x , y(x))

df

dx
=
∂f

∂x
+
∂f

∂y

dy

dx

Derivative of the governing equations: R (x , y(x)) = 0

dR
dx

=
∂R
∂x

+
∂R
∂y

dy

dx
= 0→ ∂R

∂y

dy

dx
= −∂R

∂x

Substitute the result into the derivative equation

df

dx
=
∂f

∂x
−∂f
∂y

[
∂R
∂y

]−1

︸ ︷︷ ︸
ψ

∂R
∂x



Partial derivative terms evaluated using
Automatic Differentiation (AD)

Solve the governing equations

R (x , y(x)) = 0

Solve the adjoint equations for the particular
function of interest, f[

∂R
∂y

]T
ψ = −∂f

∂y

and compute the derivatives

df

dx
=
∂f

∂x
+ ψT ∂R

∂x



Our requirements for using AD

Yield derivatives consistent with the flow
solution and be verifiable with the complex step

Require no modification to the original code.

Require no duplication of the original code.

Result in an efficient adjoint derivative
computation.

Have an automatic implementation.

Incur no nonlinear run-time penalty

Low memory footprint.



Adjoint approach with AD has evolved
through four approaches

1 Single Cell: AD cell residual routine, loop over
cells to assemble full Jacobian [2005]

2 Forward mode coloring: AD original residual
routines using coloring for efficiency and store
full Jacobian [2011]

3 Full reverse mode: AD master ghost routing
that yields the desired transposed
Jacobian-vector products in a matrix-free
fashion [2014]

4 Hybrid reverse mode: AD individual
non-linear routines and assemble the transposed
Jacobian-vector productions manually [2015]
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Small changes in shape can make a
big difference in performance

Best

Good

Bad

5% less 
drag



Transonic aerodynamic shape optimization
requires a high-fidelity model
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ADflow is well suited for optimization studies

Parallel, 2nd order, finite-volume multiblock/overset solver for
the RANS equations

SA and SST turbulence models

Exact discrete adjoint implemented using AD

Linearized turbulence model

Newton–Krylov solution method for extremely rapid
convergence



Newton–Krylov method especially useful for optimization
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Design optimization requires mores than just a flow solver



Multiblock free-form deformation volume
approach for complex configurations

Visualized as embedding an object in a clear, flexible,
rubber-like material

R3 → R3 B-spline basis mapping

Smooth with global and local shape control

Common parametrization for all disciplines



Fast mesh deformation handles large design changes




ADODG Case 5: The CRM Wing-Body-Tail Configuration

Nominal operating point: Mach=0.85, CL=0.5
Off design conditions: M=0.85, CL=0.65; M=0.89, CL=0.456
Flight Reynolds number: 43× 106

Weighted drag minimization at fixed lift
Trimmed flight conditions with tail control variable
100% minimum thickness constraints
No decrease in wing initial volume



“Separation sensor” method for buffet onset prediction

Separated flow correlates with lowering of the lift curve slope

Integral of area where x-axis component skin friction is
negative

Sep =
1

Aref

∫∫
S

1.0

1.0 + e−2k(χ−λ)
dS

χ = −~V · ~Vfreestream

Smooth Heaviside function (k=10)
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Buffet onset for the CRM at M=0.85

Red surface denotes flow in the negative stream-wise direction.
The brown isosurface is the Lovely–Haines shock sensor.



ADODG Case 5 problem statement

minimize
∑N

i=1WiCDi
Quantity

with respect to Wing cross sectional shape 240
Wing twist 9
Angle of attack (αi ) N
Tail rotation angle (ηi ) N

subject to CLi − C ∗Li = 0.0 N

CMyi
= 0.0 N

tj ≥ tjCRM
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Case 5.1: Single point optimized design characteristics



Case 5.2: Off design conditions improve robustness



ML/D contours give clear indication of
off-design performance

Buffet onset boundary
∆α = 0.1 buffet onset boundary
1.3 g margin to buffet

99% ML/Dmax of baseline
99% ML/Dmax

Absolute maximum ML/D
Integration region based on
actual 1.3 g margin
Integration region based on
baseline 1.3 g margin



Off-design weighting or buffet-onset constraint?
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Case 5.3 and Case 5.4 still result in unsatisfactory designs



Will multipoint formulations help?
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Case 5.7: ML/D maximization with variable CL.





Computational cost breakdown in CPU-hours

Intel E5540 CPUs running at 2.66 GHz

Case L2 optimization L1.5 optimization Contour Grid convergence Total

Baseline – – 1 346 817 2 162
5.1 289 611 1 270 1 009 3 179
5.2 2 378 2 394 1 795 1 121 7 688
5.3 1 290 2 505 1 750 910 6 457
5.4 1 507 2 602 1 384 1 024 6 518
5.5 2,090 3 506 1 392 830 7 369
5.6 1,111 1 803 1 147 610 4 673
5.7 4,136 6 623 1 800 696 13 255

Total 12 802 19 567 11 886 7 019 51 303
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Wing design is more than just aerodynamics

Shape in flight

Shape on ground

B787 wing at OSL and en route to JFK • © 2013 J.R.R.A. Martins



Why you should not trust an aerodynamist
(even a brilliant one) to make design decisions

[NASA]



Want to optimize both aerodynamic shape and
structural sizing, with high fidelity



MDO for Aircraft Configuration with High-fidelity (MACH)

Python user script
Setup up the problem: objective function, constraints, design variables, optimizer and solver options

Optimizer interface
pyOptSparse
Common interface to various
optimization software

Aerostructural solver
AeroStruct
Coupled solution methods and coupled
derivative evaluation

Geometry modeler
DVGeometry/GeoMACH
Def nes and manipulates
geometry, evaluates derivatives

Flow solver
ADflow
Governing and
adjoint equations

Structural solver
TACS
Governing and
adjoint equations

SNOPT Other
optimizers

Underlying solvers are parallel and compiled

Coupling through memory only

Emphasis on clean Python user interface



Structural Solver TACS:
Toolkit for the Analysis of Composite Structures

Linear finite element method with MITC shell elements

Efficient parallel-direct solver for systems with millions of
degrees of freedom

Structural residuals: S(u) = 0



Load and displacement transfer

CFD loads must be transferred to the CSM model

Rigid link approach for non-matching surfaces

Design variable dependent, but robust

r

uA

ut

ur × r

Structural element

Rigid link

Jig aerodynamic surface, XJ

Displaced aerodynamic surface, XS

ur

r

Displaced
Structural element



Aerostructural solution techniques:
Nonlinear Block Gauss–Seidel Method (NLBGS)

Solve CFD:

Transfer 
Forces

Solve CSM:

Transfer
Displacements

A: Aerodynamic residuals
w : Aerodynamic states
S: Structural residuals
u: Structural states

Convergence can be accelerated with Aitken acceleration

θ ← θ

(
1−

(
∆u(k) −∆u(k−1)

)
·∆u(k)

‖
(
∆u(k) −∆u(k−1)

)
‖2

)
u(k+1) ← u(k) + θ∆u(k)



Aerostructural solution techniques:
Coupled Newton–Krylov Method (CNK)

Solve:

Forces

Displacements

R =
(
AT ST

)T
:

Aerostructural residuals
w : Aerodynamic states
u: Structural states

Monolithic solution strategy – full aerostructural problem
treated simultaneously
Newton update:∂A∂w ∂A

∂u
∂S
∂w

∂S
∂u

[∆w

∆u

]
= −

[
A (w)

S (u)

]
Matrix-free FGMRES with Block–Jacobi preconditioner
With wrapped codes and direct state/residual variable access,
very little code modification!



Adjoint method can be extended to aerostructural system

Adjoint sensitivities are imperative for high-fidelity
aerostructural optimization with large numbers of design
variables

For each function of interest, I , solve for the coupled adjoint

vector, Ψ =
(
ψT φT

)T
:∂A∂w ∂A

∂u
∂S
∂w

∂S
∂u

T [
ψ

φ

]
=
[
∂I
∂w

∂I
∂u

]T
Adjoint vector is independent of the number design variables

Solve one adjoint for each function

Total sensitivity with respect to design variables, x , can then
be obtained with

dI

dx
=
∂I

∂x
− ψT

(
∂A
∂x

)
− φT

(
∂S
∂x

)



Adjoint method efficiently computes gradients
with respect to thousands of variables
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Let’s do aerostructural optimization!

NASA-Michigan undeformed Common Research Model (uCRM)



Optimize with respect to 972 “aerodynamic” and
structural sizing variables



Optimization objective and design variables

Function/variable Description Quantity

minimize
∑N

i WiFB
with respect to xspan Wing span 1

xsweep Wing sweep 1
xchord Wing chord 1
xtwist Wing twist 7
xairfoil FFD control points 192
xalphai

Angle of attack at each flight condition 12
xηi Tail rotation angle at each flight condi-

tion
12

xthrottlei Throttle setting for each cruise flight con-
dition

7

xaltitude Cruise altitude 1
XCG CG position 1
xskin pitch Upper/lower stiffener pitch 2
xspar pitch LE/TE Spar stiffener pitch 2
xribs Rib thickness 45
xpanel thick Panel thickness skins/spars 172
xstiff thick Panel stiffener thickness skins/spars 172
xstiff height Panel stiffener height skins/spars 172
xpanel length Panel length skin/spars 172

Total design variables 972



Constraints

Function/variable Description Quantity
subject to L = niW Lift constraint 12

CMyi
= 0.0 Trim constraint 12

T = D Thrust constraint 7
1.08D − Tmax < 0 Excess thrust constraint 7
tLE/tLEInit

≥ 1.0 Leading edge radius 20
tTE/tTEInit

≥ 1.0 Trailing edge thickness 20
Vwing > Vfuel Minimum fuel volume 1
xCG − 1/4MAC = 0 CG location at 1/4 chord MAC 1
Lpanel − xpanel length = 0 Target panel length 172
KSstress ≤ 1 2.5 g Yield stress 4
KSbuckling ≤ 1 2.5 g Buckling 3
KSbuckling ≤ 1 -1.0 g Buckling 3
KSbuckling ≤ 1 1.78 g Yield stress 3
KSbuckling ≤ 1 1.78 g Buckling 4∣∣∣xpanel thicki

− xpanel thicki+1

∣∣∣ ≤ 0.005 Skin thickness adjacency 168∣∣xstiff thicki − xstiff thicki+1

∣∣ ≤ 0.005 Stiffener thickness adjacency 168∣∣∣xstiff heighti
− xstiff heighti+1

∣∣∣ ≤ 0.005 Stiffener height adjacency 168

xstiff thick − xpanel thick < 0.005 Maximum stiffener-skin differ-
ence

172

∆zTE,upper = −∆zTE,lower Fixed trailing edge 8
∆zLE,upper = −∆zLE,lower Fixed leading edge 8

Total constraints 961



Fewer geometric constraints are required
for aerostructural optimization



Considering multiple flight conditions
is required for a practical design

7 cruise conditions
for performance

2 off-design buffet
onset conditions

3 maneuver
conditions for
structural
constraints

All flight conditions
trimmed
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Summary

Efficient and accurate gradient computations via the adjoint
method and automatic differentiation

Dual challenge of expensive function evaluations with large
number of design variables

Aerodynamic shape optimization limits design space

Extend the adjoint method to multiple disciplines

Aerostructural design optimization with respect to 1000
design variables

Still much more work to do!
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